6 resultados para Vibrio vulnificus, Genome sequencing, Hybrid assembly, Pathogenesis, Virulence factor, Hemolysin, Secretion system

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antibiotic resistance, production of alginate and virulence factors, and altered host immune responses are the hallmarks of chronic Pseudomonas aeruginosa infection. Failure of antibiotic therapy has been attributed to the emergence of P. aeruginosa strains that produce β-lactamase constitutively. In Enterobacteriaceae, β-lactamase induction involves four genes with known functions: ampC, ampR, ampD, and ampG, encoding the enzyme, transcriptional regulator, amidase and permease, respectively. In addition to all these amp genes, P. aeruginosa possesses two ampG paralogs, designated ampG and ampP. In this study, P. aeruginosa ampC, ampR, ampG and ampP were analyzed. Inactivation of ampC in the prototypic PAO1 failed to abolish the β-lactamase activity leading to the discovery of P. aeruginosa oxacillinase PoxB. Cloning and expression of poxB in Escherichia coli confers β-lactam resistance. Both AmpC and PoxB contribute to P. aeruginosa resistance against a wide spectrum of β-lactam antibiotics. The expression of PoxB and AmpC is regulated by a LysR-type transcriptional regulator AmpR that up-regulates AmpC but down-regulates PoxB activities. Analyses of P. aeruginosa ampR mutant demonstrate that AmpR is a global regulator that modulates the expressions of Las and Rhl quorum sensing (QS) systems, and the production of pyocyanin, LasA protease and LasB elastase. Introduction of the ampR mutation into an alginate-producing strain reveals the presence of a complex co-regulatory network between antibiotic resistance, QS alginate and other virulence factor production. Using phoA and lacZ protein fusion analyses, AmpR, AmpG and AmpP were localized to the inner membrane with one, 16 and 10 transmembrane helices, respectively. AmpR has a cytoplasmic DNA-binding and a periplasmic substrate binding domains. AmpG and AmpP are essential for the maximal expression of β-lactamase. Analysis of the murein breakdown products suggests that AmpG exports UDP-N-acetylmuramyl-L-alanine-γ-D-glutamate-meso-diaminopimelic acid-D-alanine-D-alanine (UDP-MurNAc-pentapeptide), the corepressor of AmpR, whereas AmpP imports N-acetylglucosaminyl-beta-1,4-anhydro-N-acetylmuramic acid-Ala-γ-D-Glu-meso-diaminopimelic acid (GlcNAc-anhMurNAc-tripeptide) and GlcNAc-anhMurNAc-pentapeptide, the co-inducers of AmpR. This study reveals a complex interaction between the Amp proteins and murein breakdown products involved in P. aeruginosa β-lactamase induction. In summary, this dissertation takes us a little closer to understanding the P. aeruginosa complex co-regulatory mechanism in the development of β-lactam resistance and establishment of chronic infection. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the difficulty in treating recalcitrant infections and the growing resistance to antibiotics, new therapeutic modalities are becoming increasingly necessary. The interruption of bacterial quorum sensing (QS), or cell-cell communication is known to attenuate virulence, while limiting selective pressure toward resistance. This study initiates an ethnobotanically-directed search for QS inhibiting agents in south Florida medicinal plants. Fifty plants were screened for anti-QS activity using two biomonitor strains, Chromobacterium violaceum and Agrobacterium tumefaciens. Of these plants, six showed QS inhibition: Conocarpus erectus L. (Combretaceae), Chamaecyce hypericifolia (L.) Millsp. (Euphorbiaceae), Callistemon viminalis (Sol.ex Gaertn.) G. Don (Myrtaceae), Bucida burceras L. (Combretaceae), Tetrazygia bicolor (Mill.) Cogn. (Melastomataceae), and Quercus virginiana Mill. (Fagaceae). These plants were further examined for their effects on the QS system and virulence of Pseudomonas aeruginosa, an intractable opportunistic pathogen responsible for morbidity and mortality in the immunocompromised patient. C. erectus, B. buceras, and C. viminalis were found to significantly inhibit multiple virulence factors and biofilm formation in this organism. Each plant presented a distinct profile of effect on QS genes and signaling molecules, suggesting varying modes of action. Virulence attenuation was observed with marginal reduction of bacterial growth, suggesting quorum quenching mechanisms unrelated to static or cidal effects. Extracts of these plants were also investigated for their effects on P. aeruginosa killing of the nematode Caenorhabditis elegans. Results were evaluated in both toxin-based and infection-based assays with P. aeruginosa strains PA01 and PA14. Overall nematode mortality was reduced 50-90%. There was no indication of host toxicity, suggesting the potential for further development as anti-infectives. Using low-pressure chromatography and HPLC, two stereoisomeric ellagitannins, vescalagin and castalagin were isolated from an aqueous extract of C. erectus . Structures were confirmed via mass spectrometry and NMR spectroscopy. Both ellagitannins were shown to decrease signal production, QS gene expression, and virulence factor production in P. aeruginosa. This study introduces a potentially new therapeutic direction for the treatment of bacterial infections. In addition, this is the first report of vescalagin and castalagin being isolated from C. erectus, and the first report of ellagitannin activity on the QS system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The predominant pathogen found in the lungs of cystic fibrosis (CF) patients is Pseudomonas aeruginosa. The success of the infection is partially due to virulence factor production, which is regulated by quorum sensing (QS) signaling. Currently, antibiotics are used to treat the infection, but resistant forms of P. aeruginosa have evolved, necessitating alternative treatments. Previous animal studies showed that treatment with extracts from the Chinese herb Panax ginseng C.A. Meyer reduced bacterial load resulting in a favorable immune response. It is hypothesized that ginsenosides, the major bioactive compounds in ginseng, is responsible for this effect. This study explores the role of ginseng extracts in attenuating P. aeruginosa virulence. A sequential extraction was performed using hexane, methylene chloride, methanol, and water. High performance liquid chromatography (HPLC) analysis showed the methanol and water ginseng extracts contained the known ginsenosides Rb1, Rb2, Rc, Rd, Re, and Rg1• All extracts were tested on biomonitor strains of Agrobacterium tumefaciens,Chromobacterium violaceum, and P. aeruginosa. Antibacterial and anti-QS activity were assessed using a disc diffusion assay. This was then followed by thin layer chromatography (TLC) bioautographic assay to further separate active compounds. The hexane and dichloromethane extracts, that lacked ginsenosides, displayed antibacterial activity against C. violaceum, whereas methanol and water extracts had anti-QS activity. The results of the bioassay with the pure ginsenoside standards showed that they lack antibacterial or anti-QS activity. Our results indicate that there are bioactive compounds, other than ginsenosides, that are the cause of antibacterial effects and anti-QS in the ginseng extracts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Cell-to-cell communication (quorum sensing (QS)) co-ordinates bacterial behaviour at a population level. Consequently the behaviour of a natural multi-species community is likely to depend at least in part on co-existing QS and quorum quenching (QQ) activities. Here we sought to discover novelN-acylhomoserine lactone (AHL)-dependent QS and QQ strains by investigating a bacterial community associated with the rhizosphere of ginger (Zingiber officinale) growing in the Malaysian rainforest. Results By using a basal growth medium containing N-(3-oxohexanoyl)homoserine lactone (3-oxo-C6-HSL) as the sole source of carbon and nitrogen, the ginger rhizosphere associated bacteria were enriched for strains with AHL-degrading capabilities. Three isolates belonging to the generaAcinetobacter (GG2), Burkholderia (GG4) and Klebsiella (Se14) were identified and selected for further study. Strains GG2 and Se14 exhibited the broadest spectrum of AHL-degrading activities via lactonolysis while GG4 reduced 3-oxo-AHLs to the corresponding 3-hydroxy compounds. In GG2 and GG4, QQ was found to co-exist with AHL-dependent QS and GG2 was shown to inactivate both self-generated and exogenously supplied AHLs. GG2, GG4 and Se14 were each able to attenuate virulence factor production in both human and plant pathogens. Conclusions Collectively our data show that ginger rhizosphere bacteria which make and degrade a wide range of AHLs are likely to play a collective role in determining the QS-dependent phenotype of a polymicrobial community.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen. Several antibiotic resistant strains of P. aeruginosa are commonly found as secondary infection in immune-compromised patients leaving significant mortality and healthcare cost. Pseudomonas aeruginosa successfully avoids the process of phagocytosis, the first line of host defense, by secreting several toxic effectors. Effectors produced from P. aeruginosa Type III secretion system are critical molecules required to disrupt mammalian cell signaling and holds particular interest to the scientists studying host-pathogen interaction. Exoenzyme S (ExoS) is a bi-functional Type III effector that ADP-ribosylates several intracellular Ras (Rat sarcoma) and Rab (Response to abscisic acid) small GTPases in targeted host cells. The Rab5 protein acts as a rate limiting protein during phagocytosis by switching from a GDP- bound inactive form to a GTP-bound active form. Activation and inactivation of Rab5 protein is regulated by several Rab5-GAPs (GTPase Activating Proteins) and Rab5-GEFs (Rab5-Guanine nucleotide Exchange Factors). Some pathogenic bacteria have shown affinity for Rab proteins during infection and make their way inside the cell. This dissertation demonstrated that Rab5 plays a critical role during early steps of P. aeruginosa invasion in J774-Eclone macrophages. It was found that live, but not heat inactivated, P. aeruginosa inhibited phagocytosis that occurred in conjunction with down-regulation of Rab5 activity. Inactivation of Rab5 was dependent on ExoS ADP-ribosyltransferase activity, and more than one arginine sites in Rab5 are possible targets for ADP-ribosylation modification. However, the expression of Rin1, but not other Rab5GEFs (Rabex-5 and Rap6) reversed this down-regulation of Rab5 in vivo. Further studies revealed that the C-terminus of Rin1 carrying Rin1:Vps9 and Rin1:RA domains are required for optimal Rab5 activation in conjunction with active Ras. These observations demonstrate a novel mechanism of Rab5 targeting to phagosome via Rin1 during the phagocytosis of P. aeruginosa. The second part of this dissertation investigated antimicrobial activities of Dehydroleucodine (DhL), a secondary metabolite from Artemisia douglasiana, against P. aeruginosa growth and virulence. Populations of several P. aeruginosa strains were completely susceptible to DhL at a concentration between 0.48~0.96 mg/ml and treatment at a threshold concentration (0.12 mg/ml) inhibited growth and many virulent activities without damaging the integrity of the cell suggesting anti-Pseudomonas activity of DhL.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the difficulty in treating recalcitrant infections and the growing resistance to antibiotics, new therapeutic modalities are becoming increasingly necessary. The interruption of bacterial quorum sensing (QS), or cell-cell communication is known to attenuate virulence, while limiting selective pressure toward resistance. This study initiates an ethnobotanically-directed search for QS inhibiting agents in south Florida medicinal plants. Fifty plants were screened for anti-QS activity using two biomonitor strains, Chromobacterium violaceum and Agrobacterium tumefaciens. Of these plants, six showed QS inhibition: Conocarpus erectus L. (Combretaceae), Chamaecyce hypericifolia (L.) Millsp. (Euphorbiaceae), Callistemon viminalis (Sol.ex Gaertn.) G. Don (Myrtaceae), Bucida burceras L. (Combretaceae), Tetrazygia bicolor (Mill.) Cogn. (Melastomataceae), and Quercus virginiana Mill. (Fagaceae). These plants were further examined for their effects on the QS system and virulence of Pseudomonas aeruginosa, an intractable opportunistic pathogen responsible for morbidity and mortality in the immunocompromised patient. C. erectus, B. buceras, and C. viminalis were found to significantly inhibit multiple virulence factors and biofilm formation in this organism. Each plant presented a distinct profile of effect on QS genes and signaling molecules, suggesting varying modes of action. Virulence attenuation was observed with marginal reduction of bacterial growth, suggesting quorum quenching mechanisms unrelated to static or cidal effects. Extracts of these plants were also investigated for their effects on P. aeruginosa killing of the nematode Caenorhabditis elegans. Results were evaluated in both toxin-based and infection-based assays with P. aeruginosa strains PA01 and PA14. Overall nematode mortality was reduced 50-90%. There was no indication of host toxicity, suggesting the potential for further development as anti-infectives. Using low-pressure chromatography and HPLC, two stereoisomeric ellagitannins, vescalagin and castalagin were isolated from an aqueous extract of C. erectus. Structures were confirmed via mass spectrometry and NMR spectroscopy. Both ellagitannins were shown to decrease signal production, QS gene expression, and virulence factor production in P. aeruginosa. This study introduces a potentially new therapeutic direction for the treatment of bacterial infections. In addition, this is the first report of vescalagin and castalagin being isolated from C. erectus, and the first report of ellagitannin activity on the QS system.